HORST WEITKAMP, ULRICH HASSERODT und FRIEDHELM KORTE

Spektroskopische Untersuchungen an Cyclopropanderivaten

Aus der Shell Grundlagenforschung-Gesellschaft m. b. H., Schloß Birlinghoven (Eingegangen am 23. März 1962)

Eine Identifizierung der Cyclopropanstruktur ausschließlich durch IR-Spektroskopie ist zur Zeit nicht möglich. In den Massenspektren treten keine für den Dreiring charakteristischen Fragment-Massen auf. Die Massenspektren lassen sich einheitlich unter der Annahme interpretieren, daß der Ring durch Elektronenstoß geöffnet wird und anschließend die angeregte, offenkettige Zwischenverbindung zerfällt. Im UV-Spektrum wird für 80% der Verbindungen eine kurzwellige Absorptionsbande bei 190-200 mµ gefunden, die in ihrer Lage lösungsmittelabhängig ist. Im Kernresonanzspektrum absorbieren Cyclopropanringprotonen charakteristisch bei $8-9\tau$. Durch Einführung eines elektronenanziehenden Substituenten in den Dreiring werden die Protonen auf den beiden Seiten des Ringes unterschiedlich abgeschirmt, so daß durch Analyse der Feinstruktur der Spektren die sterische Konfiguration ermittelt werden kann.

Für Synthesen in der Cyclopropanreihe^{*)} benötigten wir ein schnelles Verfahren zur Identifizierung der Cyclopropanstruktur. Da die verschiedentlich zur Erkennung des Cyclopropanringes herangezogenen Infrarotbanden von uns in vielen Fällen nicht gefunden wurden, obwohl durch chemischen Abbau das Vorliegen der Cyclopropanstruktur eindeutig bewiesen werden konnte, haben wir von mehr als 40 Cyclopropanen die Infrarot-, Ultraviolett-, Massen- und Kernresonanzspektren aufgenommen, um zu prüfen, ob und wieweit durch eine dieser Methoden das Vorliegen eines Cyclopropanringes nachgewiesen werden kann.

A. IR-SPEKTREN

Es hat nicht an Versuchen gefehlt, an Hand von charakteristischen Gruppenfrequenzen das Vorliegen eines Cyclopropanringes infrarotspektroskopisch nachzuweisen. So gelang kürzlich C. BRECHER, E. KRIKORIAN, J. BLANC und R. S. HALFORD¹⁾ die Totalzuordnung des Cyclopropanspektrums. Für flüssiges Cyclopropan werden folgende Frequenzen angegeben: C-H-Valenzschwingung 3081 und 3013/cm, Ringdeformationsschwingung 1026/cm und CH-Nickschwingung 865/cm.

1951 haben M. L. JOSIEN, N. FUSON und A. S. CARY²⁾ Absorptionsbanden bei 861 und 794/cm in den Spektren von 3.5-Methylen-steroiden dem Cyclopropanring zugeschrieben.

V. A. SLABEY³⁾ gibt aufgrund einer spektroskopischen Untersuchung von 34 Cyclopropanderivaten eine für den Dreiring charakteristische Bande bei 1017-1025/cm an. A. R. H. COLE⁴⁾ benutzte die C-H-Valenzschwingung bei 3040/cm, um Cyclopropane, die an allen drei C-Atomen substituiert sind, von solchen zu unterscheiden, die nur an einem oder zwei C-Atomen substituiert sind.

- ¹⁾ J. chem. Physics 35, 1097 [1961].
- ²⁾ J. Amer. chem. Soc. 73, 4445 [1951].
- ³⁾ J. Amer. chem. Soc. 76, 3604 [1954].
- 4) J. chem. Soc. [London] 1954, 3807.

^{*)} F. KORTE, D. SCHARF und K. H. BÜCHEL, Liebigs Ann. Chem., im Druck.

· · · · · · · · · · · · · · · · · · ·		IR-Spektri		UV-Spektrum	
Formel	Wellenzah	l in cm ⁻¹	Instrument	λmax log ε	
	3100-2900	1100-800	Losungsmittel	(mµ) ~	
	3120				
	3085	1047			
	3055	1027	IR 7		
•	3032	1024	_		
\sim	3014	1006	Gas		
	2995	908			
	2945	890			
	2925	857			
	2905	837			
	3015	1100		190 2.51	
\wedge	2955	1074	PE 221	Cyclohexan	
	2910	1065		-	
		1032	CCL		
$n_{\rm D}^{20}$ 1.4371		932			
		897			
	3100	1067		200 1.61	
\wedge	3055	1043	IR 7	Methanol	
\bigtriangleup -CN	3022	935			
m ²⁰ 1 4207		823	Kapillar	100 6 0 00	
MB 4.7202		808		Cyclohexan	
	3087	1017		190 2.47	
	3008	983	IR 7	Cyclohexan	
\wedge	2950	930		0,000	
CH ₂ OH	2924	902	CCL		
n ²⁰ 1.4309		852	•	199.5 1.20	
		832		Methanol	
	3080	1043		190 1.92	
	3070	1016		Cyclohexan	
\wedge	2966	947	IR 7		
	2936	927			
[CH215-CH3		903	CCl4		
		890			
	2006	62J		200 2 52	
	3095	1090		200 3.52 Methanol	
^	3008	1030	IR 7	Miculation	
ZCOCH.	2960	963	110 /	190 3.69	
20 1 4041	2920	912	CCL	277.5 1.30	
$n_{\rm D}^{*}$ 1.4241		897		Cyclohexan	
		819			
	3092	1093	ID -	200 3.90	
_	3048	1066	IK 7	Methanol	
	3008	1032	CCL		
≻-ç-≺		013	004	189 5 4.02	
		917		276 1.40	
		907		Cyclohexan	
<i>n</i> ∯ 1.4670		876		-	
		847			
		820			

Tab. 1. Verzeichnis der untersuchten Cyclopropane

	UV-Spektrum				
Wellenzah 3100-2900	l in cm ⁻¹ 1100 - 800	Instrument Lösungsmittel	λ _{max} (mμ)	log ε	
3080 3060 3024 3008 2940	1098 1080 1046 1027 998	IR 7 Kanillar	193 219 252.5 259.5 266	4.78 3.95 2.76 2.76 2.74	
2900	963 900 838 814		273 292.5 Cyclo	2.64 1.26 hexan	
3094 3010 2948 2900	1062 1042 1024 1020 992	IR 7 CCL	200 265 Meth	3.59 4.01 anol	
	985 938 903 878 818				
3070 3022 2915	1091 1043 952	PE 221	200 Meth	2.71 anoi	
	852	KBr	192 230.5 Cyclo	 ohexan	
3080 3018 2955	1078 1063 1034	PE 221	211 Meth	2.17 anol	
2913	980 914 869 857	KBr			
3072 3005 2925	1042 1031 1017	PE 221	208 Meth	2.24 anol	
	1008 918 849 826 818	KBr			
3080 3030 3002 2958 2930 2907	1098 1078 1053 1042 1034 1008 957 943 917 897 862 847	IR 7 CCl4	193.5 274.5 Cycle	5 4.11 5 1.63 ohexan	
	Wellenzah 3100 - 2900 3080 3060 3024 3008 2940 2900 3094 3010 2948 2900 3070 3022 2915 3080 3018 2955 2913 3080 3018 2955 2913 3072 3005 2925 3080 3030 3002 2925	IR-Spektr Wellenzahl in cm ⁻¹ $3100 - 2900$ $1100 - 800$ 3080 1098 3060 1080 3024 1046 3008 1027 2940 998 2900 963 2900 963 2900 963 3010 1042 2944 1062 3010 1042 2948 1024 2900 1020 992 983 933 933 903 878 818 3070 1091 3022 1043 2915 952 852 852 3080 1078 3018 1063 2955 1034 2913 980 849 849 826 818 30080 1078 3002 1053	IR-Spektrum Wellenzahl in cm^{-1} Instrument 3100 - 2900 1100 - 800 Lösungsmittel 3080 100 - 800 Lösungsmittel 3080 100 - 800 Lösungsmittel 3080 100 - 800 Lösungsmittel 30080 107 2900 963 900 838 3094 1062 900 1020 901 002 901 002 901 002 901 002 901 002 901 001 3070 1091 3070 1091 3070 1092 CCl4 3070 1080 <th colspa<="" td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th>	<td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

		IR-Spektru	m	UV-Spe	ktrum
Formel	Wellenzah 3100-2900	l in cm ⁻¹ 1100-800	Instrument Lösungsmittel	λ _{max} (mμ)	log e
CH ₂ -CO ₂ H	3080 3010 2918	1060 1028 1002 998	PE 221 KBr	211 Metha	2.14 nol
✓ ℃H ₂ −CO ₂ H Schmp. 105°		950 928 887 855			
	2980 2935 2905	1095 1075 1035 968	IR 7 CCla	208 Metha	2.24 nol
$n_{\rm D}^{20}$ 1.4288	2020	855 842		187 210 Cycloł	2.64 2.30 nexan
	2998 2945 2910	1088 1057 1048 1026	IR 7 KBr	200.5 Metha	3.11 nol
Schmp. 127°	2710	973 862 818	KDI	188 Cyclol	2.59 nexan
	3082 3058 2910	1097 1068 1037 1024	PE 221	199 205 252 258	4.04 4.07 2.24 2.55
Schmp. 83°		947 869 838	χ <u>μ</u>	264 Metha	2.22 inol
Cl	3095 2980 2935 2900	1067 1051 1022 1011	IR 7	191 Cyclol	3.01 hexan
CI n ²⁰ 1.4402		977 952 933 906 890 835 802	Kapillar		
	3090 3062 3034 2960 2930	1083 1053 1028 1003 952 933 910 883 873	IR 7 CCl4	192 211 220 250 259 267 280 290	4.66 3.84 3.89 2.51 2.47 2.21 1.11 0.95
n ²⁰ 1.5502		843		199.5 220.5 249.5 259 267.5 Metha	4.27 3.87 2.52 2.47 2.23 anol

	IR-Spektrum			UV-Spektrum	
Formel	Wellenzah 3100 - 2900	1 in cm ⁻¹ 1100 - 800	Instrument Lösungsmittel	λ _{max} (mμ)	log ε
CN	3089	1093		200	3.99
	3028	1025	PE 221	Meth	anol
	3010	1009			
ĊH1	2985	966	KBr		
	2942	925		193.5	4.08
Schmp. 51	2918	819		Cyclo	hexan
	3075	1091		199	3.59
0001	2968	1062	IR 7	277	3.95
COCH3	2915	1047		Meth	anol
		1012	CCL		
		983			
CH ₃		970			
n^{22} 1.4940		930			
		904			
		812			
	3085	1095		200	4.42
	3062	1083	IR 7	245	3.96
COC6H5	2980	1073		281	3.49
	2937	1047	CCl4	Meth	anol
$=$ \bigcirc		1028			
CH ₃		1018			
n ²⁰ 1.5253		960			
10 110 100		898			
		812			
	3085	1094		200	4.62
	3067	1075	IR 7	245	4.10
CaHs	3030	1053		Meth	anol
	3010	1047	CCl4		
	2976	1018			
CH ³	2950	955			
	2920	930			
Schmp. 87-88°		917			
		907			
		892			
	3030	1082		202	4.02
,CH₃	2960	1057	· IR 7	Meth	nanol
H ₃ C	2928	996			
) 'CH3		978	CCl ₄		
H ₃ C L		935			
CO2H		856			
Schmp. 111°		840			
		818			
	3070	1073	-	231	4.17
CO ₂ H	2985	1047	PE 221	Metl	hanol
H ₃ C	2932	1008			
		967	KBr		
HO ₂ C L		932			
Спз		893			
Schmp. 205°		845			
		808			

	IR-Spektrum			UV-Spektrum	
Formel	Wellenzah 3100-2900	1 in cm^{-1} 1100 - 800	Instrument Lösungsmittel	$\frac{\lambda_{max}}{(m\mu)}$ log ε	
CO ₂ H	3020 2977 2939	1100 1057 1025 980	PE 221 K B r	231 4.16 Methanol	
$HO_{2}C$	i	945			
ĆH3		893			
Schmp. 143°		862			
		840			
	2972	1100		223 4.27	
	2930	1068	IR 7	Methanol	
	2900	1055			
CO ₂ C ₂ H	5	1027	CCl4		
		1003			
	5	966			
CH3		930			
		245			
n _D 1.4809		827			
		821			
		815			
	3090	1045		190 2.96	
H ₃ C-O-CH ₃	3018	1015	IR 7	221.5 2.52	
X	2990	998		228 2.54	
Cľ Čl	2968	977	Kapillar	Cyclohexan	
$n_{\rm D}^{20}$ 1.4554 cis	2938	948			
2	2902	837			
	3007	1086		191 2.89	
	2964	1066		222 2.44	
H ₃ CCH ₃	2935	1041	IR 7	228 2.46	
\mathbf{X}	2900	1008	77	Cyclohexan	
CI CI		960	Kapillar		
n20 1 AA 10 strans		843			
ND 1.4419 Mana		826			
		806			
	3092	1083		190.5 2.96	
Ci CH ₂	3009	1078	PE 221	Cyclohexan	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2980	1052			
	2938	1038	Kapillar		
m ²⁰ 1 4738		947			
<i>ום ו</i> קוים מכודים מכודים משורים משור		893 842			
	3096	1095		190 3.18	
	3000	1082	IR 7	Cyclohexan	
CL CO2CH3	2955	1048		-	
	2905	989	Kapillar		
Cr V CH ₃		944			
$n_{\rm P}^{20}$ 1.4629		896		200 2.99	
-		867		Methanol	
		804			

	IR-Spektrum		UV-Spektrum		
Formel	Wellen 3100 290	zahl in cm ⁻¹ 00 1100-800	Instrument Lösungsmittel	λ _{max} (mμ)	loge
Cl CH ₃ Cl C ₆ H ₃ n ²⁰ 1.5409	3080 3057 3025 2985 2964 2927	1088 1074 1068 1047 1033 1027 1002 964 934	IR 7 CCl4	191 242.5 248.5 252.5 257.5 264 Cyclo	4.67 2.02 2.09 2.22 2.31 2.19 hexan 4.15
		910 868 843		248.5 252.5 259 264.5 Metha	2.11 2.23 2.32 2.20 anol
Cl Cl CH CH ₃ CH ₃ cH ₃ cH ₃ cH ₃	3015 2965 2937 2910	1100 1047 1027 996 959 952 925 885 885 842	IR 7 CCl4	191.5 230 Cyclo	3.01 2.31 hexan
CI CI CH ₃ $CH_3$ $r_{\rm D}^{20}$ 1.4419 trans	3000 2964 2935	1065 1022 998 962 952 923 882 845 822	IR 7 CCl4	191 Cyclo	3.05 hexan
Br $H_{CH_3}$ $r_{D}^{20}$ 1.4961 trans	3022 2962 2934	1094 1037 1020 996 956 944 924 877 836 811	IR 7 Kapillar	200 Cyclo 204.5 Meth	3.46 hexan 3.45 anol
H ₃ C H ₃ C O	3087 2980 2937	1092 1072 1056 923 808	PE 221 K <b>B</b> r	200 218 Meth	3.12 2.83 anol

Formel	Wellenza 3100-2900	IR-Spektru hl in cm ⁻¹ 1100800	ım Instrument Lösungsmittel	UV-Spektrum λ _{max} log ε (mμ)
Cl Cl ngº 1.5028	3017 2944	1096 1087 1035 1027 972 950 910 842 833	IR 7 CCl4	200 2.89 Methanol
СH3 H3C CH3 л ^в 1.4719 CH3	3050 2998 2950 2920	1034 991 975 962 937 932 920 904	IR 7 CCL	191.5 3.96 Cyclo <b>hex</b> an
H ₃ CCH ₃	2996 2950 2925	1072 1052 1006 973 956 941	IR 7 CCL	191.5 3.06
CL CL CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	3010 2997 2970 2940	1100 1074 1040 1032 1008 1002 984 930 853 827	IR 7 CCl4	200 2.78 Methanol 188 3.21 Cyclohexan
Br Br CH ₃ CH ₃ CH ₃ n ²⁰ 1.5168	2995 2980 2963 2932	1086 1064 1040 1023 1004 995 977 910 842	IR 7 CCL	205 3.52 Cyclohexan
Cl Cl CH ₃ CH ₃ CH ₃	3015 2965 2930	1040 1000 953 895 853	IR 7 KBr	191 3.20 Cyclohexan
Schmp. 50°				199.5 2.97 Methanol

Die Verbindungen wurden nach Verfahren hergestellt, die in der Literatur beschrieben sind. Die flüssigen Substanzen mit Ausnahme der bromhaltigen Verbindungen wurden gaschromatographisch gereinigt und isoliert. Dabei wurde in keinem Fall eine Isomerisierung beobachtet.

Die festen Substanzen wurden durch ihre Schmelzpunkte, die flüssigen durch die Brechungsindizes charakterisiert.

Es wird die Lage der IR-Absorptionsbanden im Bereich von 3100--2900 und 1100-800/cm angegeben.

Ferner wird die Lage der UV-Absorptionsmaxima mit den dazugehörigen Extinktionskoeffizienten mitgeteilt.

Kaliumbromid und Tetrachlorkohlenstoff "für IR-Spektroskopie" sowie Methanol und Cyclohexan "für UV-Spektroskopie" wurden von der Firma Merck, Darmstadt, bezogen.

1957 veröffentlichten C. F. H. Allen, T. J. DAVIS, W. J. HUMPHLETT und D. W. STEWART⁵⁾ eine spektroskopische Untersuchung von 20 Cyclopropanderivaten, die durch Alkyl-, Acetyl-, Phenyl-, Benzoyl- und andere Gruppen substituiert waren. Sie fanden, daß Banden im Bereich um 3030 und 1020/cm keinen eindeutigen Hinweis auf die Anwesenheit oder das Fehlen des Cyclopropans geben.

In Tab. 1 haben wir die Infrarotbanden von 42 Cyclopropanen im Bereich von 3100-2900 und 1100-800/cm angegeben. Der Tabelle ist zu entnehmen, daß nur 19% der Verbindungen im Bereich von 3030-3050, 81% im Bereich von 1000 bis 1035 und 17% im Bereich von 850-870/cm absorbieren.

Die Lage der für den Cyclopropanring charakteristischen Infrarotbanden wird so sehr von Substituenten beeinflußt, daß ausschließlich durch Infrarotanalyse nicht entschieden werden kann, ob ein Cyclopropan vorliegt.

#### **B. UV-SPEKTREN**

Von 41 Cyclopropanderivaten wurden die UV-Spektren mit dem Cary-14-Spektrophotometer registriert. Die Lage der Absorptionsmaxima sowie die dazugehörigen Extinktionskoeffizienten sind in Tab. 1 angegeben. 27 Verbindungen wurden in Cyclohexanlösung vermessen. Davon absorbieren 25 im Bereich von  $187 - 193 \text{ m}\mu$ , während eine Verbindung bei 200 und eine andere bei 205 m $\mu$  absorbiert. Die Logarithmen

der Extinktionskoeffizienten  $\varepsilon \left[ = \frac{M}{c \cdot d} \cdot \lg \frac{I_0}{I} \right]$  liegen zwischen 1.9 und 4.8.

28 Verbindungen wurden in methanolischer Lösung gemessen. 20 Verbindungen haben eine kurzwellige Absorptionsbande bei 199–200 m $\mu$ , während für 8 größere Wellenlängen (bis zu 231 m $\mu$ ) gefunden werden. Die Logarithmen der Extinktionskoeffizienten variieren zwischen 1.2 und 4.3.

14 der 41 Cyclopropanverbindungen wurden sowohl in Methanol als auch in Cyclohexanlösung gemessen. Der Übergang von Methanol zu Cyclohexan als Lösungsmittel bedingt eine hypsochrome Verschiebung der kurzwelligen Absorptionsbande von 4-21 mu mit einem Mittelwert von 10 mu und ein Ansteigen der Logarithmen der Extinktionskoeffizienten von 0.09-1.27 mit einem Mittelwert von 0.39.

Allgemein ist festzustellen, daß die kurzwellige Absorptionslage eines Cyclopropans vergleichbar ist mit der kurzwelligen Absorption von Olefinen. Daher kann die kurzwellige Absorption eines Cyclopropans bei großem Extinktionskoeffizienten das Vorliegen eines Olefins vortäuschen. Eine Unterscheidung zwischen einem Olefin und seinem isomeren Cyclopropan ist jedoch in einfacher Weise durch Kernresonanzspektroskopie möglich.

5) J. org. Chemistry 22, 1291 [1957].

#### C. MASSENSPEKTREN

Bisher wurden in der Literatur nur wenige Massenspektren von Cyclopropanderivaten beschrieben. Dabei handelt es sich um reine Kohlenwasserstoffe^{6.7)}.

Es schien daher interessant, zu untersuchen, ob die Massenspektren von Cyclopropylverbindungen allgemein Eigenschaften aufweisen, die spezifisch dem Cyclopropanring zugeordnet werden können.

Die Ergebnisse unserer Untersuchungen zeigen jedoch, daß dies nicht der Fall ist, sondern daß sich die Spektren von Cyclopropanderivaten insbesondere von denen der isomeren Olefine kaum unterscheiden. Tatsächlich lassen sich die Massenspektren der Dreiring-Verbindungen am besten deuten, wenn man annimmt, daß diese bei Elektronenstoß in offenkettige Produkte übergehen, aus denen die im Auffänger registrierten Ionen entstehen.

$$\begin{array}{c} \overset{\tilde{C}-C-\tilde{C}-R}{\swarrow} \\ \swarrow \\ R \\ \overset{\tilde{C}-C-R}{\dot{C}-C-R} \\ \dot{C} \\ \dot{C} \\ B \end{array} \right) \rightarrow \text{Ionen}$$

Eine Anzahl von Cyclopropanderivaten  $\ R$  zeigt Ionen der Zusammensetzung CHR[®] in wesentlich größerer Häufigkeit als Ionen der Zusammensetzung C₃H₅[®] oder R[®], die mit gleicher Wahrscheinlichkeit aus dem intakten Cyclopropansystem wie aus den offenkettigen Formen entstanden sein können.



Abbild. 1. Massenspektren des 1.1-Dichlor-3-methyl-2-isopropyl-cyclopropans und des Isopropylcyclopropans

Die Abspaltung eines neutralen Äthylen-Derivates aus der offenen Form (A) bietet eine einfache energetische Erklärung für die Häufigkeit der Ionen CHR[®], z. B.



⁶⁾ American Petroleum Institute, Research Project 44, Catalog of Mass Spectral Data.
 ⁷⁾ W. KIRMSE und W. v. E. DOERING, Tetrahedron [London] 11, 266 [1960].

Verbindung	Ionen in %	des Gesamtion	enstromes
CH2-CH32)	C ₃ H ₆	C ₃ H ₅	C ₂ H ₅
	25.35	11.14	5.74
СН₂ОН	C ₂ H ₄ O	C ₃ H ₅	<b>CH</b> ₃ O
	38.52	5.2	8.01
H ₃ C CH CH CH ₃	C4H8 26.40	•	C ₃ H ₇ 6.20
	CH3	C ₂ H ₃	(C ₂ H ₄ )
	0.20	6.61	1.89
	CH ₃ 0.70	CH ₂ 0.10	

Tab. 2 zeigt weitere Beispiele mit größeren Häufigkeiten der Bruchstückionen CHR[®].

Tab. 2. Häufigkeiten einiger Bruchstückionen aus den Massenspektren von Cyclopropanverbindungen

Bei Bis-[2-methyl-cyclopropyl]-keton führt die Sprengung der Bindung (B) zu  $C_2$ -Bruchstücken, die in wesentlich größerer Häufigkeit auftreten als das  $CH_3^{\oplus}$ -Ion, das aus einem intakten Dreiring zu erwarten wäre.

Die Aufsprengung einer Ringverbindung in ein offenkettiges Zwischenprodukt bei Elektronenstoß zeigte bereits D. P. STEVENSON⁸⁾ am Methylcyclopropan-[ $\alpha$ -1³C]. MEYERSON und Mitarbb. berichteten kürzlich⁹⁾, daß bei einer Elektronenbeschleunigungsspannung von 50 Volt 71% der auftretenden Ionen des Methylcyclopentans aus dem offenkettigen Zwischenprodukt entstammen, während der Cyclohexanring im Methylcyclohexan kein offenkettiges Zwischenprodukt bildet. Der Unterschied im Verhalten der beiden Ringsysteme wird auf die unterschiedliche Ringspannung zurückgeführt, die beim Cyclohexan praktisch fehlt und beim Cyclopentan auf 6 kcal/Mol geschätzt wird¹⁰⁾. Die wesentlich höhere Ringspannung des Cyclopropansystems von 33 kcal/Mol¹¹¹ liefert ein weiteres Argument für die Existenz der oben angenommenen offenkettigen Zwischenstufe.

Die Massenspektren von Cyclopropanverbindungen mit elektronenanziehendem Substituenten ( $\mathbf{R} = -C\mathbf{N}$ ,  $-CO_2\mathbf{H}$ ) zeigen die Bruchstückionen CHR[®] nur in geringer Häufigkeit. Eine Untersuchung des Cyclopropylcyanids und seiner isomeren C₃-Alkenylcyanide zeigte jedoch, daß die Massenspektren dieser Verbindungen praktisch identisch sind.

⁸⁾ J. Amer. chem. Soc. 80, 1571 [1958].

⁹⁾ S. MEYERSON, T. D. NEVITT und P. N. RYLANDER, Reprint of a paper, Symposium on Mass Spectrometry, Oxford 1961.

¹⁰⁾ T. L. ALLEN, J. chem. Physics 31, 1039 [1959], und dort angegebene Zitate.

¹¹⁾ F. KLAGES, Lehrbuch der organischen Chemie, 2. Aufl., Bd. II, S. 512, Verlag Walter de Gruyter & Co., Berlin 1957.

Dadurch wird wahrscheinlich, daß bei Verbindungen dieser Konstitutionen mindestens sehr ähnliche Zwischenstufen nach dem Elektronenstoß durchlaufen werden. Analoge Verhältnisse werden auch beim massenspektrometrischen Vergleich der Cyclopropancarbonsäure mit der Crotonsäure und der Methacrylsäure gefunden.





Die Deutung der Massenspektren von 1.1-Dichlor-cyclopropanderivaten wird kompliziert durch die Tatsache, daß die Bildung von Ionen durch Sprengung der relativ schwachen C--Cl-Bindung stark bevorzugt ist. Die Fragmentierung der meisten Verbindungen dieser Stoffklasse erfolgt zunächst durch Verlust von Chlor und nachfolgende HCl-Abspaltung. Ionen der Zusammensetzung CHR[®] bzw.  $\left(C_{R'}^{R}\right)^{\oplus}$ werden deshalb nur in geringer Häufigkeit gefunden.

Jahrg. 95

Aus den angegebenen Gründen kann man auf Grund der Massenspektren zwischen einer Cyclopropanverbindung und ihren isomeren Olefinen nicht entscheiden. Bei allen genügend flüchtigen Verbindungen mit Ausnahme des 1.1-Dichlor-tetramethylcyclopropans ließen sich jedoch die Molekulargewichte durch Nachweis der Molekülionen eindeutig bestimmen.

### D. KERNRESONANZSPEKTREN

Im Kernresonanzspektrum absorbiert unsubstituiertes Cyclopropan bei  $9.78 \tau^{12}$ . Durch Substitution verschiebt sich das Signal der Ringprotonen nach  $8-9\tau$ . Abbild. 3



Abbild. 3. Absorptionslagen von Protonen in Cyclopropanverbindungen. Die Protonen, deren Signallage angegeben wird, sind mit einem  $\Box$  umrandet



Abbild. 4. Kernresonanzspektren von Allylcyanid und Cyclopropylcyanid ¹²⁾ K. B. WIBERG und B. J. NIST, J. Amer. chem. Soc. 83, 1226 [1961].

gibt eine Übersicht über die Absorptionslage von Cyclopropanprotonen sowie von verschiedenen Substituentenprotonen.

Besonders groß ist der Lageunterschied von olefinischen und Cyclopropanprotonen, so daß eine Unterscheidung zwischen einem Cyclopropan und seinem isomeren Olefin leicht möglich ist. So können z. B. die Isomeren Cyclopropylcyanid und Allylcyanid, die praktisch identische Massenspektren liefern (vgl. Abbild. 2), leicht mittels der Kernresonanzspektren identifiziert werden, wie durch Abbild. 4 veranschaulicht sei. Gleichzeitig kann auf Grund der Integration, die für Allylcyanid drei olefinische Protonen liefert, zwischen diesem und den Isomeren Crotonnitril und Methacrylnitril unterschieden werden, da diese nur zwei olefinische Protonen enthalten.

Weitere Information wird durch Interpretation der Spektrenfeinstruktur erhalten. Bei Cyclopropanen, die durch elektronenanziehende Gruppen substituiert sind, können die Protonen auf beiden Seiten der Ringebene verschieden abgeschirmt sein was infolge Spin-Kopplung zu entsprechend linienreichen Signalen führt.

So liefern die Cyclopropanringprotonen folgender 1.1-Dichlor-2-methyl-cyclopropane ein aus vier Linien bestehendes Signal, wie es für ein AB-System charakteristisch ist. Aus den Spektren berechnen sich unter Benutzung der Tabellen in J. A. POPLE, W. G. SCHNEIDER und H. J. BERNSTEIN¹³⁾ folgende Konstanten:

	Substituent	v0g	J
Ģ	R	Hz	Hz
	-CN	19.4	9.0
>ĸ	-CO ₂ CH ₃	18.2	7.5
Ln ₃	-C ₆ H ₅	10.4	7.0

Um festzustellen, ob die unterschiedliche Abschirmung der Protonen auf den beiden Seiten der Ringebene nur auf die Art der elektronenanziehenden Substituenten zurückzuführen ist, haben wir das Kernresonanzspektrum von 1.1-Dichlor-2-phenylcyclopropan aufgenommen. Für eine unterschiedliche Abschirmung sollten wir die Feinstruktur für ein ABC- oder ABX-System finden. Die Aufspaltung entspricht jedoch einem AB₂-System mit folgenden Parametern:  $v_0 \delta = 27.5$  Hz und J = 9.9 Hz. Die Abschirmungsparameter der Ringprotonen werden demnach nicht nur durch die Elektronegativität, sondern auch durch den Raumbedarf der Substituenten bestimmt. Darüber hinaus wird auch die Bandenlage der Substituentenprotonen durch die Größe der Substituenten beeinflußt, was an den Spektren von 1.1-Dichlor-2.2.3-trimethyl- und 1.1-Dichlor-2.2.3.3-tetramethyl-cyclopropan gezeigt werden soll. Für die Trimethylverbindung werden als Bandenlagen für die Methylgruppen drei Protonen bei 8.31  $\tau$  und sechs Protonen bei 8.59  $\tau$  gefunden, während die Tetramethylverbindung nur ein Signal bei 8.42 r liefert. Für das entsprechende 1.1-Dibrom-2.2.3-trimethyl-cyclopropan wird ein Signal von drei Protonen bei  $8.74 \tau$  und ein Signal von sechs Protonen bei 8.98 r gefunden.

Zusammenfassend ergibt sich, daß die Größe der Substituenten sowohl die Bandenlage der Substituentenprotonen als auch die Abschirmungsparameter der Ringprotonen wesentlich bestimmt.

¹³⁾ "High-resolution Nuclear Magnetic Resonance", McGraw-Hill Company, Inc. 1959.

Chemische Berichte Jahrg. 95

Verglichen mit den anderen spektroskopischen Methoden erhält man die umfangreichste Information bei der Untersuchung von Cyclopropanen aus den Kernresonanzspektren. Es kann sicher zwischen einem Olefin und dem isomeren Cyclopropan unterschieden werden. Durch Interpretationen der Spektrenfeinstruktur ist es möglich, die sterische Konfiguration zu bestimmen.

### Instrumente

Zur Aufnahme der S	pektren dienten folgende Geräte:
Infrarotspektren:	Beckman IR-7 sowie Perkin Elmer 221 mit Prisma/Gitter Mono- chromator
Ultraviolettspektren:	Applied Physics Cary 14
Massenspektren:	Atlas CH-4
Kernresonanzspektren:	Trüb Täuber KIS-25 mit einer Frequenz von 25 MHz.

Herrn Prof. Dr. E. VOGEL, Köln, und Herrn Dr. G. OHLOFF, Mülheim, danken wir für die Überlassung einiger Substanzen.